Exact Rate of Convergence of the Milstein Method for Fractional Stochastic Differential Equations
کد مقاله : 1079-FEMATH6
نویسندگان
رامین آذری *1، امید فرخنده روز2، داوود احمدیان2
1دانشجوی دکتری تخصصی رشته ریاضیات کاربردی آنالیزعددی دانشگاه تبریز
2دانشکده علوم ریاضی دانشگاه تبریز
چکیده مقاله
In this paper‎, ‎we first express the method of variable-order fractional stochastic differential equations with ‎Poisson‎ jump‎.‎‎
‎‎In the following‎, ‎we introduce the compensated Ito-Taylor expansion for the solution of jump-diffusion FSDEs‎. ‎‎
Nevertheless, the ‎Milstein method ‎has never been applied to fractional stochastic differential ‎equations‎ with
Poisson jump, at least to the best of our knowledge. In the present paper, in order to fill
this gap, we introduce the ‎Milstein ‎method‎ for fractional stochastic differential ‎equations‎‎ with Poisson jump
by some numerical integration technique and perform a mean-square ‎convergence‎ analysis of the proposed
scheme.‎ ‎‎Finally‎, ‎‎we study a variable-order fractional stochastic
differential equation with Poisson ‎jump‎ driven by a multiplicative noise, which contains a non-Lipschitz weakly singular kernel with a variable ‎‎‎order, and loses the convolution structure due to the introduction of the variable-order fractional differential operator. ‎‎
‎We proved the wellposedness and moment estimates of the problem. We also developed a generalized ‎‎
‎Milstein ‎method‎ for the problem and we proved the mean-square convergence ‎rate‎ by using the compensated Milstein ‎method‎‎.‎‎‎‎
کلیدواژه ها
Compensated Milstein methods‎, ‎Mean-square convergence‎, ‎Variable-order fractional stochastic‎, ‎Poisson jump
وضعیت: پذیرفته شده
login