Numerical Solution of Fractional Stochastic Differential Equations and Stability Analysis
کد مقاله : 1080-FEMATH6
نویسندگان
رامین آذری1، امید فرخنده روز *2، داوود احمدیان2
1دانشجوی دکتری تخصصی رشته ریاضیات کاربردی آنالیزعددی دانشگاه تبریز
2دانشکده علوم ریاضی دانشگاه تبریز
چکیده مقاله
In this paper, we investigate the exponential mean square stability for both the
solution of variable order fractional stochastic differential equations‎‎ (‎FS‎DEs)
with Poisson jump, as well for the ‎c‎ompensated ‎Milstein scheme implemented
of the proposed model. First, we prove that the considered model has the
property of exponential mean square stability. Moreover, it is shown that the ‎c‎ompensated ‎Milstein ‎scheme‎
‎‎can inherit the exponential mean square stability by using the variable order fractional stochastic differential ‎equations‎
with Poisson ‎jump‎ in the paper. Eventually, numerical ‎solution‎
‎are provided to show the ‎eff‎ectiveness of the theoretical results.‎‎
Also, by introducing ‎the c‎ompensated ‎Milstein‎
scheme and by using some numerical integration ‎technique‎ as well approximating the integro
part of the model by the simple trapezoidal rule, we obtain the same exponential mean
square stability property for some restrictive ‎stepsizes. ‎Finally,‎ we proved the exponential mean square ‎stability‎
‎‎by using the compensated Milstein ‎method.‎
کلیدواژه ها
Compensated Milstein methods‎, ‎Mean-Square stability‎, ‎Variable-order fractional‎ ‎stochastic‎, ‎Poisson jump‎
وضعیت: پذیرفته شده برای ارائه شفاهی
login