A new finite difference/spectral method ‎for ‎numerical ‎solution ‎of‎ ‎the Black--Scholes equation for ‎European ‎put ‎option‎s
کد مقاله : 1083-FEMATH6
نویسندگان
یونس طالعی *
دانشگاه تبریز -فارغ التحصیل دانشگاه محقق اردبیلی- حق التدریس در حال حاضر
چکیده مقاله
The ‎Black--‎Scholes equation was proposed by Fisher Black and Myron Scholes in 1973‎ to express the behavior of the option price in the European style market. It is regarded as one of the best ways of determining fair prices of ‎options. ‎‎The ‎main ‎purpose of this paper ‎is‎ to‎‎‎‎ invetigate a new ‎numerical ‎‎method‎ based on backward ‎finite ‎difference method and ‎spectral‎ ‎Galerkin method ‎ ‎for ‎solving ‎Black--‎Scholes equation for European put ‎option‎‎. ‎In this paper, ‎‎by discretization in time for the Black-scholes equation we get the ordinary system of differential equations ‎(ODEs)‎ in ‎the‎ spatial ‎domain. ‎The ‎obtained ‎ODEs ‎is ‎solved ‎by ‎applying‎‎ the spectral galerkin method based on the ‎generalized Jacobi ‎polynomials‎‎‎‎. Therefore, ‎‎‎the problem is reduce‎ to the solution of a system of‎
‎algebraic equations‎. ‎The ‎convergence‎ of the method ‎‎‎‎in suitable spaces of functions, equipped with the ‎weighted‎ ‎‎$‎L^2$-‎ ‎norm‎
‎is‎‎ ‎discussed‎. ‎Also‎, ‎we provide numerical experiment ‎to ‎show‎ the accuracy‎‎ of ‎method.‎
کلیدواژه ها
Black--Scholes‎ ‎equation,‎ Generalized Jacobi ‎polynomials,‎ ‎Backward-difference ‎method, ‎‎‎‎Convergence ‎analysis‎
وضعیت: پذیرفته شده برای ارائه شفاهی
login